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HEL: B 1 X HE 3K Starling’s Principle 12 L7225 TEBEEZNLTELLI LD EEZ LN T W
AY1900 EA B I P & AR IE & % B3 2 BEIENER SN, ZoRICITHEMBEOBER
BERMPOZNEIIZEAEEN LW EPRBO LN, S OICMENE L HRRRMIE L % 8k
9 % intracellular transport system d F R &4, F 7 Starling’s Principle |278 & L5 & @BR D K
BIRETICBWTIZET A2 RO ON. 209 ZMERRE & HBREE S OB IZI1X
Starling’s Principle |2 & 72 2 EBBESELE L W E D LNz, T4 b b IMENNOERD
BENL T RCTMmEWNRMAE, 7% 6 N ZICBER: L 7-/Mfg (podocyte, pericyte 7z &) DOBEEERY
RIEEIZ Lo TITbNT WA Z EARO LN, RE, KM% EDORBERFIZIZ I NS ORREL KD
NI MAES TR 238 LA OFEZAE L5 2 EBRD 6Nz LEo BR#A 5 Starling’s
Principle l3¥ B LFMIIZIE L  TH T2 MEWNOEKBEBEHICES S L Z L IZR#EETH 2
L L7z

[FUIC

FA IO Ty g v 7 REOMBERR ST & MK
BRESEE OMREERET 2 B THmMMEY 3 v
7 % B A LTMTER A NE ) X DBRESTERAL
FBELLZ DD oY, ZFOBICE) v o8
Dy vy EELEIELZSENIMEDIZIT
70 % Thotz. L LIEK MEHEDS >
Z7REIIMFED1/3THEEmbNTWT, ¥
W) 23D E YR REF DL ITHETH
LM TH o7z, 72 LR sinusoid %
R % 1% 13 basement membrane % K19 %
eI, ZolMENEMREICIEHREE#T 5
Fr v AMBHRLRY Y, MEAD S MEIHE
S\ MR HHAT L CHFIR O MR D & > 2%

JIRBISMAEDZNITEL 7B L ik 2D LM
Moz, Z L CHROMEBEE, 3% b b iFiE:
5DV YNHHE) VD70 %EEDBY OT
W& ) Dy oy RED R 5 & —In3 R
ML Tz, LR3EZLRROBEEZELL72DIC
VIHBE A O HE AR T - B DAHRERIR, ) > SR
F N BENPERZ DN TE-MEEDL1/3 ~
1/4TiE%<LT, ThULEOBWNMETRWALD
BERANTR o 72, F O DMBREE A EE Z A L
THR I N5 L =9 Starling’s Principle 1258/ %
LTz, 22 THE, ZORIHTIIENID
KRR BN % B E T 5 Starling’s Principle 2SR
TEBRIZEDL ) 529EZTHI.
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Starling’s Principle

BEREETEE (2L 2 13K5T) ICidER
MTHBIEE, L2, BESFICEARER
WThLHE (PERE) %M TTMEREREBYE
% U T % ol S 72 REIC T E R A U A BoKIE
EEERINDG. ZORBERER L MENI OB
IKIE & & RN A S bE TIERNS DRSO
BB % 518 L 72D »5Starling’s Principle” T& 5.
ThbLbETRTREINS.

Jv=Lpc [(Pc—Pi)— o (nc— mi)]

CZTIVIZIIERNNOKTBEOETH Y,
Lpc id filtration coefficient (E#R$) & LTE
DOENLFEHTHSD. £LTPc, PildENEN
MENNDOEFKETH Y, nc, nilEE N ENIMEE,
BIUHBMROBERELT, o | XMBEBHE
*RCHIEROEBBRETH L. EBRITHIES
N7zPc, PiOMEIZHmmHg T L&Y
72me, nie DEL2mmHg T TH D, ZORKRE,
BIFIHE SN EBREIIERLY O T & < g
H/NERMETH S, —F, MENNOBFE, 7%
b HIKGTORBENNIIMEE & AR & 2R TAHB
BEDHEREIKE EEZHLE 027, ZLTX
AR DT 1 & o TIENUEAE U725 E61213
Ll % BY. HAREFIC L o TR
ESNLHECRBEOEBEIITET 27

Starling’s Principle hiE8 2 EAM4:EE
HEAENOMERETITh T K5BEII L
AR Starling’s Principle (2> TIThbILT\W5 &
ZbNBDMEBETTANT—REZT-o T
L, EMETHVELZLIMETH D EERE
Tz, £ TMENOME & EBHEE &
B IEA AR & e AT L 7o 1B N R A
FafiCh WAL 5. THbLLHLIIIRINS
occludin, claudin, cadherinZe EQGFTH 5.
ThbbINsDOHFIC L o TIE RO ERMYE
HRoTWwE, LaLIhsosFidfiaio
actin L EEHE L7257 V288 TH Y, PRI
BEEEITEDTWHIRETII R, 72722hb
D F X7 GHRE AR D IR P (& B A e
D bglycocalyx IZXoTEbLRLTWAS, L7z
7% T Starling’s Principle T/R & 115 &K % [fil
BREZKRD B HIEF ML glycocalyx 275, L
7L Z ?Dglycocalyx b X C[E—4 T CHE
N72EFBETII R, Z0FRSITEREICED
hyaluronan T& 5% 7%, Z UIZH MO E
(cytoplasma) 7S A4ERIZ{# ST hyaluronan O &
% B L, hyaluronan D@ & %12 glycocalyx
J& otk # R 5 syndecan, B L OHIfEE
DWEBD SMOT LR = DDE % 2 5 glypican
% & Tglycocalyx BAMER S hTwa Y, L7-
Mo TH—HFTHE SN B L5 RHIC

F1 B4OEHNEOEEFY

TABLE 8-1. FILTRATION COEFFICIENTS FOR
VARIOUS CAPILLARY BEDS

w

K
Tissua {ml./min.-100 grm.-mm. Hg)* Reference
Muscle
Cat 0.0105 Pappenheimer and Soto-Rivera, 1948
Dog 0.0104 Pappenheimer etal., 1931; Dianaetal., 1972
Rat 0.0330 Renkin and Gilmore, 1954
Forearm of Man 0.0057 Landis, 1934; Krogh et al., 1932
Lung )
Dog 0.070 Guyton and Lindsey, 1959
0.260 Tavlor and Gaar, 1968, 1969
0.030, Uter et al,, 1966
Sheep 0.030 Staub, 1974
Intestine
Cat 0.08-0.44 Folkow et al., 1963
(32) (3)
0.09-0.40 Mortillaro and Taylor, 1973
(30) (3)
Dog 0.08-0.44 Johnson and Hanson, 1962
(30 (3)

*Venous pressure at which Kywas measured.
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vessel lumen

glycocalyx layer disrupted glycocalyx
. O ' -
endothelial fenestra { caveola )
cell claudin, occludin J
i [ ]
cadherin 0 —— re—————
claudin, occludin [ = fenestra ( caveola )|
Q Q elongated occludin & claudin
A A
podocyte pericyte \ l
/ cytokine complex }
e Ty e, A
inflammatory cells
Catammatory celis>
interstitial space
t physiological state * l inflammation
L oreed

X1 £EWRED SKRREANOMEA LMK, MEARMRERE, 3£ intercellular molecules DZEA1E

STEMNRETIEARMBER (intercellular gap), @ % WIS IME AN K MIERMEIC & 5 fenestra (caveola) % #.&
intracellular channel 4t U Tl#E, &2\ IEEERORELFITONS. LEBEOF v XIVENL TOME, #HE
R& DB B T3 podocyte, FFl& T3 pericyte ZEICE > THIEEhTWVW3. LA LUKRRETIRChS 0#la
BEM, HEWVIHERTEH LN HS.

B, RELZECL->TMEARMBRIREEZ (T RVIRERICIIARMIRZIHhES, SLUREMRLSERIO
7= cytokine complex, & < IZ vascular endothelial growth factor 1R % % (F TIHLE P R iR (3 4%0E L P R SRR REBR 3
AT 5. ZOEE, tight junction 1§ 5 claudin, occludin % zons occluden % 7t U T cadherin &[4 (C K #8
A® actin EFEALTWADOTEIZEIS SN TRAMBERIIEKRT 2. S5 ICHBERICESAFHhE, v/O7 7—
SHEEDRERBHLPOBMBEINALTESL NV BHEES, free radical D1ER IC & Y claudin, occludin, cadherin,
glycocalyx #ZE, BEEIIS. T /A-REMD S KBS O/ chemokine Z &€ cytokine complex (37 MADIFHER,
YIO7 77— COBOARMREERICEEL, AEARKREICEEIES. ELTENSPOBERShAEL N
7 JAMEBEE, free radical % claudin, occludin, cadherin, glycocalyx #E%E L THlEEHEA#H A€, MFEHRHIZ
Eind 3 E&Mkahs.

4725, FRUED D 222 D glycocalyx B MESFEHIIEINT 5.
IZIZIMEE D RZEL TN 5.

ZL TIN5 Doccludin, claudin, cadherin, HERRRERE & MBI & D
glycocalyx b MIENEMIESELEL7ZLDTH B\EIZBWTHBMBOBEREZL X MEED
D, LI LIEENICHFEL, $-20BENE /3¢ mbTE LD REDOHE TIRMEEDNDZN
fELRWVbDTH v, FE Bl avy s 0 KELWETEHONELROoNE S ST
BZiX glycocalyx AL, AR T 5— 72 B Mlfa R W13 Starling’s Principle I27R &1
B4 CTad A syndecan A A EEMN T A Z &A% LYBEEZN L TEEINSL DT L, Mgk
RonaW Fr-MfEz ED I E L MEREAT B (intercellular gap), & %W IIHMfEHNF ¥ » &
HMIE, HAHVIIEME (72 & 21 XFHER) 26 )V % %38 L C (intracellular transport) #iHi L7z
Wl S N2y N IRER, 5\ IZTEERRR MEEITHENDDEDRIETH 5.

ICBREE N BE 1213 glycocalyx DAz 5§ EFED 1) intercellular pore channel
MRS E Y VS 7L BET Y. ZhitkoT MRS 2% T 5 MR T2 1950 ~
FAREEY ) BmmEY, B BRI mEED 1970 4E12 Bennet & ¥, Rhodin & ¥, Plade &%,
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X 2

EMMEEOWE : MRBEOMERE ORI intercellular
pore EBRHhh3EREIL AN B.
BM : basement membrane L : lumen

Intercellular Pore

X#k6) &£UFIHA—7%BXHEK6) [ Karnowsky, M.J.
Morphology of capillaries with special reference to
muscle capillaries In Crone, C. & Lassen eds
Capillary Permeability Academic Press New York
1970 pp: 341-350 &V COX%ZFIHL TW 3.

Karnovsky? & o CEFHMEE T 12 pore channel
ELTROLATYS. L TGuyton® 1l ZDF
Y ANV EREA RO CTERE 2 RB Z2#E L
B2bDTH5DEFHEL, KOEHEFIZRL TS
—[2. 2L TMEFILRLAGEIIEIIOF
X VAV LK LR MENRH 2 EHI12T 5.
F-AREMREENB GVEL LGS, 2L 2iE
RIEZ X 0 &7z eytokine complex 2L D)
M2 vascular endothelial growth factor
(VEGF) Z&f 258 S 1T B HERE D LiE 25
AU 7-35A % 13 MBaRER (intercellular gap)
HEAR UINE A O M4 138 5\ AR R o g
. 7PN Y V87 5T ORE L MENE
MIRRERTH O EIL Z Lz B3 5 D3 Levick TR,
Michel .C.C* i3 Starling’s Principle i3&TiE & 1
TR 5w E 20104 ICIRIE L T 5.
2) intracellular channel
MEAEMEY Bl 5F v > 2 b b MmO
Rk fE~D#AT (intracellular transport) ZB§5-
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3 Sarin IZ& 3 intracellular channel 448

A~EDIANTIEEMMEOMTEERL, A~CIZHD
h2MEANDODHEOVEBE TREINI2BEREER
(basement membrane) T V), MEEEH S AFICMHY
- MERR OWZER I glycocalyx TH 3. BTRHNI D
R D H§ » LRI SIS diaphragmed fenestrae 1
HYTE2HST, HHRRTTIIEET S. C Tk
BE(C5E2 MR A 4 U open fenestrae R L TUL 3.
D, ECHEEENFIZIEALEHEL, ZTORBEETD
HERB. ZLTDIZHLTIE open fenestrae I &L
#» phagocytotic (endocytotic) % g4t D9 FDELY
ARDRSN B, &5(CEICIE open fenestra 753 V),
ZOEICH T IR EROMFFREBETIEBRE LS.

Sarin, H. Physiological upper limits of pore size
different blood capillary types and another perspective
on the dual pore theory of microvascular permeability
J. Angiogen. Res. 2: 14-33, 2010 XY 5|HA

LT3, B2 IXHHE Tld sinusoid MR Ml % B
BT AHF ¥ Y AUDPBDLNTVWEY, ZoF v
¥ AV OB R OB &R fenestra & L TR®
ShAY, ZhizETOMIIZIGE L 72 caveola
ICHETHHDTHD. ELTIDF Y A v%
WS 5 M4 E % pericyte BMHIEI L TV 5. L
LIFREZ R IE Z D pericyte B3 M L TIIEE®
F v A INVEEEHE L CMIRETTEESZ b 725
g 2

—7, BEOAKEMERDOANLAMIIZL Z D
FY Y ANDROOND, ZLTIDF v R
DR OEIZ 1 podocyte DSFFTE L T\ TILEE D &
BERAHLC0E®. L LERFELATRIO
podocyte 2SEEINL DO TIIHEITRH LTIV T
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SVRMPELD. FRIOF X ANVILEDLDS
B & N5 .0EME NafJRR TS 4 FIZ&k o T
KEnz I b@0LATREY,

TWICB W TIZEMEIZ VEGF 2 H L 2
DF v ANVOREEE L TRHERM»EbN
BIERBOOLNTVREY, LALZINL) %
intracellular channel IZAEEDER, FEZFIC LD
Bl oTW5, Sarin® 3450 IMmE N MO
transcellular channel |22V T ORBFH T 312~
L72& ) %5 EZRL T\ 5,

PLE, glycocalyx DR INLDF ¥ ¥ A )b
DEREREE 213 oxygen radicals A5 LT 5
ZELFEDLNTWAEE 2D = b RHyIREE
TOWEAMIE, WEMEEEOZEIO—FE LT
FHERFDEALZ F 1ITER L L 7.

&

DEDTELKEBR L TEL ZAEBIIRET
DAEKIZ BT HHMREEOEL, MENNDOBEE
DREL T X THEAMILOTES) (active function)
Db EIATbhTwa EEwmaEns, ZL T
Starling’s Principle (¥## b5 EIE L Wi g
AfEREER, 3 b bIMEBEN/ O MAE, HRRR R
DORENBIGT HZ L IIRETH S & Ebis.

& OB
FARERICE L THERMRE A BB E RS

BHEEORREL R, BRIV H -7 EEE

CREH UL L BT 5.
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